The turbulent destruction of clouds - I. A k-ǫ treatment of turbulence in 2D models of adiabatic shock-cloud interactions
نویسندگان
چکیده
The interaction of a shock with a cloud has been extensively studied in the literature, where the effects of magnetic fields, radiative cooling and thermal conduction have been considered. In many cases, the formation of fully developed turbulence has been prevented by the artificial viscosity inherent in hydrodynamical simulations. This problem is particularly severe in some recent simulations designed to investigate the interaction of a flow with multiple clouds, where the resolution of individual clouds is necessarily poor. Furthermore, the shocked flow interacting with the cloud has been assumed to be completely uniform in all previous single-cloud studies. In reality, the flow behind the shock is also likely to be turbulent, with non-uniform density, pressure and velocity structure created as the shock sweeps over inhomogenities upstream of the cloud (as seen in recent multiple cloud simulations). To address these twin issues we use a sub-grid compressible k-ǫ turbulence model to estimate the properties of the turbulence generated in shock-cloud interactions and the resulting increase in the transport coefficients that the turbulence brings. A detailed comparison with the output from an inviscid hydrodynamical code puts these new results into context. Despite the above concerns, we find that cloud destruction in inviscid and k-ǫ models occurs at roughly the same speed when the post-shock flow is smooth and when the density contrast between the cloud and inter-cloud medium, χ ∼ < 100. However, there are increasing and significant differences as χ increases. The k-ǫ models also demonstrate better convergence in resolution tests than inviscid models, a feature which is particularly useful for multiple-cloud simulations. Clouds which are over-run by a highly turbulent post-shock environment are destroyed significantly quicker as they are subject to strong “buffeting” by the flow. The decreased lifetime and faster acceleration of the cloud material to the speed of the ambient flow leads to a reduction in the total amount of circulation (vorticity) generated in the interaction, so that the amount of vorticity may be self-limiting. Additional calculations with an inviscid code where the post-shock flow is given random, grid-scale, motions confirms the more rapid destruction of the cloud. Our results clearly show that turbulence plays an important role in shock-cloud interactions, and that environmental turbulence adds a new dimension to the parameter space which has hitherto been studied.
منابع مشابه
Target detection Bridge Modelling using Point Cloud Segmentation Obtained from Photogrameric UAV
In recent years, great efforts have been made to generate 3D models of urban structures in photogrammetry and remote sensing. 3D reconstruction of the bridge, as one of the most important urban structures in transportation systems, has been neglected because of its geometric and structural complexity. Due to the UAV technology development in spatial data acquisition, in this study, the point cl...
متن کاملA Numerical Study of Dynamic Detonability Characteristics of Two-phase Unconfined Fuel-Air Clouds
A numerical simulation has been carried out to study the detonability characteristics of two- phase unconfined clouds. The parameters equivalence ratio, turbulence, shape, volume and uniformity of the cloud and the delay time distribution are recognized and introduced as the most important factors determining the reactivity of the cloud and influencing the initiation of a successful detonation....
متن کاملNumerical Predictions of Turbulent Mixed Convection Heat Transfer to Supercritical Fluids Using Various Low Reynolds Number k-e Turbulence Models
There are a number of systems in which supercritical cryogenic fluids are used as coolants or propellant fluids. In some modern military aircraft, the fuel is pressurized above its critical point and used as a coolant to remove heat from the aircraft engine. Accurate prediction of heat transfer coefficients to turbulent flows of supercritical fluids is essential in design of such systems. One o...
متن کاملStudy of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model
Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...
متن کاملEffects of Different Turbulence Models in Simulation of Unsteady Tip Leakage Flow in Axial Compressor Rotor Blades Row
Characteristics of rotor blade tip clearance flow in axial compressors can significantly affect their performance and stable operation. It may also increase blade vibrations and cause detrimental noises. Therefore, this paper is contributed to investigate tip leakage flow in a low speed isolated axial compressor rotor blades row. Simulations are carried out on near-stall condition, which is val...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008